
"TRADER" SERVICE SHEET

HE Belmont 555 is a 4-valve (plus rectifier) 3-band superhet designed to operate from AC mains of 200-260 V 50-60 C/S. No voltage adjustment is provided, and our sample was stamped 220 V, but the valve tolerances

will accommodate the range quoted.
Some quodels were fitted with transformers for 25 C/S mains, and some for 40-60 C/S, while others had tappings for 100-250 V mains. The SW range is 16.5-56.6 m.

CIRCUIT DESCRIPTION

Aerial input on MW and LW via coupling coil L3 to single tuned circuits L5 (MW) plus L6 (LW) and C24, with ad-

ditional coupling via C1, C21 on MW. AVC is obtained also, as GB for V3 pen-C21 is the MW trimmer. On LW S1 tode is obtained from the same source, closes, and C1 is connected in parallel although its value will depend upon the with L3 and the aerial IF filter coils L1, L2. On SW, input is via C1, C21 to single

L2. On SW, input is via C1, C21 to single tuned circuit L4, C24.

First valve (V1, Ken-Rad 6A7) is a heptode operating as frequency changer with electron coupling. Oscillator grid coils L7 (SW), L8 (MW) and L9 (LW) are tuned by C25. Parallel trimming by C26 (SW), C27 (MW) and C6, C28 (LW); series tracking by C7 (SW), C5, C30 (MW) and C29 (LW). Reaction coupling by L10 (SW) and L11, together with common impedance of trackers. (MW and mon impedance of trackers, (MW and

Second valve (V2, Ken-Rad 6D6) is a variable-mu RF pentode operating as IF amplifier with tuned-primary, tunedsecondary transformer couplings C. L12, L13, C32 and C33, L14, L15, C34.

Intermediate frequency 465 KC/S. Diode second detector is part of double-diode RF pentode valve (V3, Ken-Rad 6B7), the diode anodes being strapped together. Audio frequency component in rectified output is developed across one half of the manual volume control R7, which also operates as load resistance,

which also operates as load resistance, and passed directly to CG of pentode section. IF filtering by C12 and C14.

Provision for connection of gramophone pick-up between one end of R7 and chassis, so that this control, whose centre tap is connected to chassis, operates as a radia/gram foder. radio/gram fader.

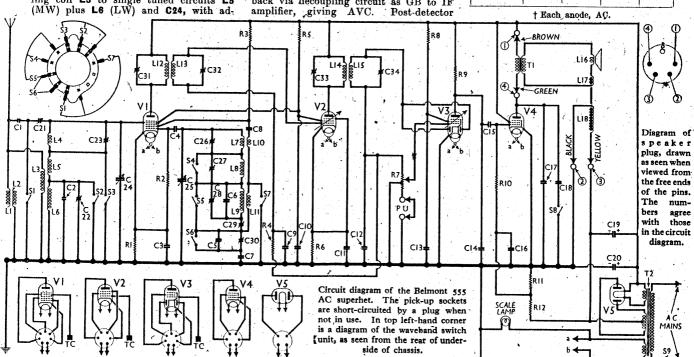
DC potential developed across R7 is fed back via decoupling circuit as GB to IF amplifier, giving AVC. Post-detector

setting of the control.

Resistance-capacity coupling by R9, C15 and R10 between V3 pentode and pentode output valve (V4, Ken-Rad 42E). Fixed fone correction by C17 in anode circuit, together-with two-point tone control by C18, S8.

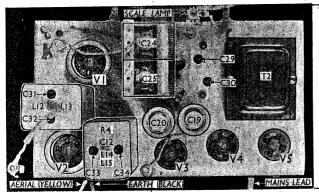
by C18, S5.

HT current is supplied by full-wave rectifying valve (V5, Ken-Rad 80).


Smoothing by speaker field L18 (in negative HT lead) and electrolytic condensers C19, C20. GB potential for V4 is obtained from junction of resistances R11, which form a patential divider access 118. which form a potential divider across L18.

VALVE ANALYSIS

Valve voltages and currents given in the table below are those measured in our receiver when it was operating on mains of 237 V. The receiver was tuned to the lowest wavelength on the MW band, and the volume control was at maximum, but the aerial and earth leads were joined together. Voltages were measured on the 400 V scale of a Model 7 Avometer, chassis being negative.


As our sample was not a new one, the valves should be regarded only as a rough guide, particularly in the case of V4 currents, which probably should be higher in a new receiver.

Valve	Anode Voltage (V)	Anode Current (mA)	Screen Voltage (V)	Screen Current (mA)
vì 6A7	$\begin{cases} 203 \\ \text{Osci} \\ 140 \end{cases}$	1·8 lator 3·5	95	4.7
V2 6D6 V3 6B7 V4 42E V5 80	203 20 194 270†	4.7 0.7 16.0	95 12 203	1·3 0·2 3·0

BELMONT 555

to The Wireless & Supplement Electrical Trader, August 15, 1942

Plan view of the chassis. The IF tuning and oscillator tracking adjustments are indicated here, but the RF and oscillator trimmers are seen in the under-chassis view below.

COMPONENTS AND VALUES

	RESISTANCES	Values (ohms)
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12	V1 GB resistance V1 osc. CG resistance V1 osc. anode HT feed V2 CG decoupling V1, V2 SG's HT feed V2 fixed GB resistance Manual volume control V3 SG HT feed V3 pent. anode load V4 CG resistance V4 GB and speaker field f pot. divider	250 50,000 15,000 500,000 19,000 1,000,000 250,000 201,000 800,000

	CONDENSERS	Values (μF)
C1	Aerial coupling conden-	
•	ser	0.00002
C2	Aerial LW fixed trimmer	0.000035
C3	V1 cathode by-pass	0.1
C4	V1 osc. CG condenser	0.0001
C5 .	Osc. MW fixed tracker	0.000275
C6	Osc. LW fixed trimmer	0.000155
C7	Osc. SW tracker	0.0038
C8	V1 osc. anode coupling	0.002
C9	V2 CG decoupling	0.1
C10	V1, V2 SG's decoupling	0.1
C11 /	V2 cathode by-pass	0.1
C12	IF by-pass	0.00025
C13	V3 SG decoupling	0.1
C14	IF by-pass V3 pent. to V4 coupling	0.00025
Ç15	V3 pent. to V4 coupling	0.02
C16	V4 ĈG decoupling	0.1
C17	Fixed tone corrector	0.006
C18	Variable tone control	0.025
C19*	HT smoothing conden-	8.0
C20*	sers	8.0
£21‡	Aerial circ. MW trimmer	
*C22‡	Aerial circ. LW trimmer	
C23‡	Aerial circ. SW trimmer	نيد.
C24†	Aerial circuit tuning	
C25†	Oscillator circuit tuning	
C26‡	Osc. circ. SW trimmer	7
C27‡	Osc. circ. MW trimmer	
C28‡	Osc. circ. LW trimmer	
C29‡	Osc. circ. LW tracker	
C30‡	Osc. circ, MW tracker	
C31‡	1st IF trans. pri. tuning	-
C32‡	1st IF trans. sec. tuning	-
C33‡	2nd IF trans. pri. tuning	-
C34‡	2nd IF trans. sec. tuning	

* Electrolytic. † Variable. ‡ Pre-set.

DISMANTLING THE SET

Removing Chassis.—Remove the three control knobs (pull-off); remove the three set screws (with metal washers) holding chassis to bottom of cabinet; withdraw chassis, and pull out speaker plug or not as required.

Removing Speaker.—Remove the three ornamental headed screws and nuts holding speaker to front of cabinet. To withdraw the plug from the chassis, the chassis must also be removed.

When replacing, the transformer should be at the bottom.

GENERAL NOTES

Switches.—S1-S7 are the waveband switches, in a double-sided rotary unit beneath the chas-

OTHER COMPONENTS	Values (ohms)
L1 Aerial IF filter coils	
T1 trans. Sec Mains Heater sec trans, Rect. heat. sec.	0·3 70·0 0·1 0·1
S1-S7 S8 Tone control switch S9 Mains switch, ganged R7	530.0

sis. A diagram of the unit appears in the top left-hand corner of the circuit diagram, viewed in the direction of the arrow in the under-chassis view, where the unit is indicated. The table (col. 3) gives the switch positions for the three control settings, starting from the fully anti-clockwise position of the control.

S8 is the two-point tone control switch, fitted on the rear chassis member.

S9 is the QMB mains switch, ganged with the volume control R7.

Scale Lamp.—This is an MES type lamp, rated at 6.5 V, 0.3 A.
Gramophone Pick-up.—Two sockets are provided at the rear of the chassis for a gramophone pick-up. Normally, a U-shaped strap short-circuits the sockets, but this is withdrawn and replaced by the pick-up plugs for gram operation. No switching is used, the change-over being effected by a fader-type volume control.

Condensers C9, C10; C11, C13.—These are in two dual tubular units. In each unit the common chassis connection is made via the metal band encircling the case. The two flexible leads emerging from the ends of the units are the high-potential connections.

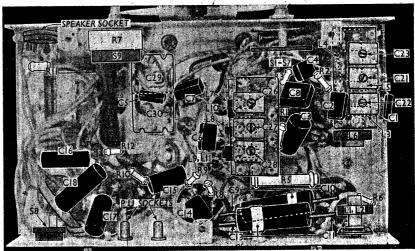
Condensers C19, C20.—These are two electrolytics mounted on the chassis deck. C19 is rated at 350 V working, and C20 at 300 V. The cases form the negative connections, so that care should be taken to insulate C19 from the chassis.

Switch Table

witch	LW	MW	sw.
	C	ō	C
S4 S5 S6		<u>-</u>	000
	witch S1 S2 S3 S4 S5 S6	S1 C S2 — S3 — S4 — S5 —	S1

CIRCUIT ALIGNMENT

CIRCUIT ALIGNMENT


IF Stages.—Switch set to MW, turn gang to minimum and volume control to maximum. Connect signal generator via a 0.1 µF condenser to control grid (top cap) of V2 and chassis, feed in a 465 KC/S (645.16 m.) signal, and adjust G33 and G34 for maximum output. Transfer signal generator lead to top cap of V1 and adjust G31, G32, then readjust G33, G34, for maximum output.

RF and Oscillator Stages.—Transfer signal generator leads, via suitable dummy aerial, to A and E leads. With gang at minimum, the pointer should cover the horizontal line on the scale.

MW.—Switch set to MW, with gang still at minimum, feed in a 187.5 m (1,600 KC/S) signal and adjust C27 for maximum output. Feed in a 214.3 m (1,400 KC/S) signal, tune it in, and adjust C30 for maximum output while rocking the gang for optimum results. Check, at 300 m (1,000 KC/S) for sensitivity and calibration.

SW.—Switch set to SW, tune to 16.7 m on scale, feed in a 16.7 m (18 MC/S) signal, and adjust C26, then C23, for maximum output. If two peaks are found for C26, select that involving the lesser trimmer capacity. Check calibration and sensitivity at 50 m (6 MC/S).

LW.—Switch set to LW, turn the gang to minimum, feed in a 923 m (325 KC/S) signal, and adjust C28, then C22, for maximum output. Feed in a 2,000 m (150 KC/S) signal, tune ti in, and adjust C29 for maximum output while rocking the gang for ontimum results.

Under-chassis view. A diagram of the S1-S7 unit appears overleaf.